Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(2): 276-285, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35538763

RESUMO

Objective To investigate the relationship between the expression of glutathione peroxidase(GPX)genes and the clinical prognosis in glioma patients,and to construct and evaluate the model for predicting the prognosis of glioma. Methods The clinical information and GPX expression of 663 patients,including 153 patients of glioblastoma(GBM)and 510 patients of low-grade glioma(LGG),were obtained from The Cancer Genome Atlas(TCGA)database.The relationship between GPX expression and patient survival was analyzed.The key GPX affecting the prognosis of glioma was screened out by single- and multi-factor Cox's proportional-hazards regression models and validated by least absolute shrinkage and selection operator(Lasso)regression.Finally,we constructed the model for predicting the prognosis of glioma with the screening results and then used concordance index and calibration curve respectively to evaluate the discrimination and calibration of model. Results Compared with those in the control group,the expression levels of GPX1,GPX3,GPX4,GPX7,and GPX8 were up-regulated in glioma patients(all P<0.001).Moreover,the expression levels of other GPX except GPX3 were higher in GBM patients than in LGG patients(all P<0.001).The Kaplan-Meier curves showed that the progression-free survival of GBM with high expression of GPX1(P=0.013)and GPX4(P=0.040),as well as the overall survival,disease-specific survival,and progression-free survival of LGG with high expression of GPX1,GPX7,and GPX8,was shortened(all P<0.001).GPX7 and GPX8 were screened out as the key factors affecting the prognosis of LGG.The results were further used to construct a nomogram model,which suggested GPX7 was the most important variable.The concordance index of the model was 0.843(95%CI=0.809-0.853),and the calibration curve showed that the predicted and actual results had good consistency. Conclusion GPX7 is an independent risk factor affecting the prognosis of LGG,and the nomogram model constructed with it can be used to predict the survival rate of LGG.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Glioma/diagnóstico , Glutationa Peroxidase/metabolismo , Humanos , Peroxidases , Prognóstico , Modelos de Riscos Proporcionais
2.
J Exp Bot ; 71(14): 4215-4231, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219322

RESUMO

Chloride (Cl-) is pervasive in saline soils, and research on its influence on plants has mainly focused on its role as an essential nutrient and its toxicity when excessive accumulation occurs. However, the possible functions of Cl- in plants adapting to abiotic stresses have not been well documented. Previous studies have shown that the salt tolerance of the xerophytic species Pugionium cornutum might be related to high Cl- accumulation. In this study, we investigated the Cl--tolerant characteristics and possible physiological functions of Cl- in the salt tolerance and drought resistance of P. cornutum. We found that P. cornutum can accumulate a large amount of Cl- in its shoots, facilitating osmotic adjustment and turgor generation under saline conditions. Application of DIDS (4,4´-diisothiocyanostilbene-2,2´-disulfonic acid), a blocker of anion channels, significantly inhibited Cl- uptake, and decreased both the Cl- content and its contribution to leaf osmotic adjustment, resulting in the exacerbation of growth inhibition in response to NaCl. Unlike glycophytes, P. cornutum was able to maintain NO3- homeostasis in its shoots when large amounts of Cl- were absorbed and accumulated. The addition of NaCl mitigated the deleterious effects of osmotic stress on P. cornutum because Cl- accumulation elicited a strong osmotic adjustment capacity. These findings suggest that P. cornutum is a Cl--tolerant species that can absorb and accumulate Cl- to improve growth under salt and drought stresses.


Assuntos
Brassicaceae , Secas , Cloretos , Osmose , Pressão Osmótica , Tolerância ao Sal , Estresse Fisiológico
3.
Plant Physiol Biochem ; 135: 489-498, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30447942

RESUMO

Apocynum venetum is an eco-economic plant species with high adaptability to saline and arid environments. Our previous work has found that A. venetum could absorb large amount of Na+ and maintain high K+ level under saline conditions. To investigate whether K+ and Na+ could simultaneously enhance drought resistance in A. venetum, seedlings were exposed to osmotic stress (-0.2 MPa) in the presence or absence of additional 25 mM NaCl under low (0.01 mM) and normal (2.5 mM) K+ supplying conditions, respectively. The results showed that A. venetum should be considered as a typical K+-efficient species since its growth was unimpaired and possessed a strong K+ uptake and prominent K+ utilization efficiency under K+ deficiency condition. Leaf K+ concentration remained stable or was even significantly increased under osmotic stress in the presence or absence of NaCl, compared with that under control condition, regardless of whether the K+ supply was sufficient or not, and the contribution of K+ to leaf osmotic potential consistently exceeded 37%, indicating K+ is the uppermost contributor to osmotic adjustment of A. venetum. Under osmotic stress, the addition of 25 mM NaCl significantly increase Na+ accumulation in leaves and the contribution of Na+ to osmotic adjustment, thus improving the relative water content, concomitantly, promoting the photosynthetic activity resulting in an enhancement of overall plant growth. These findings suggested that, K+ and Na+ simultaneously play crucial roles in the osmotic adjustment and the maintenance of water status and photosynthetic activity, which is beneficial for A. venetum to cope with drought stress.


Assuntos
Apocynum/efeitos dos fármacos , Potássio/farmacologia , Sódio/farmacologia , Apocynum/crescimento & desenvolvimento , Apocynum/fisiologia , Cálcio/metabolismo , Desidratação , Sinergismo Farmacológico , Pressão Osmótica , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Potássio/administração & dosagem , Sódio/administração & dosagem
4.
Plant Sci ; 252: 358-366, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717472

RESUMO

Hordeum brevisubulatum, called as wild barley, is a useful monocotyledonous halophyte for soil improvement in northern China. Although previously studied, its main salt tolerance mechanism remained controversial. The current work showed that shoot Na+ concentration was increased rapidly with stress time and significantly higher than in wheat during 0-168h of 100mM NaCl treatment. Similar results were also found under 25 and 50mM NaCl treatments. Even K+ was increased from 0.01 to 50mM in the cultural solution, no significant effect was found on tissue Na+ concentrations. Interestingly, shoot growth was improved, and stronger root activity was maintained in H. brevisubulatum compared with wheat after 7days treatment of 100mM NaCl. To investigate the long-term stress impact on tissue Na+, 100mM NaCl was prolonged to 60 days. The maximum values of Na+ concentrations were observed at 7th in shoot and 14th day in roots, respectively, and then decreased gradually. Micro-electrode ion flux estimation was used and it was found that increasing Na+ efflux while maintaining K+ influx were the major strategies to reduce the Na+ concentration during long-term salt stress. Moreover, leaf Na+ secretions showed little contribution to the tissue Na+ decrease. Thereby, the physiological mechanism for H. brevisubulatum to survive from long-term salt stress was proposed that rapid Na+ accumulation occurred in the shoot to respond the initial salt shock, then Na+ efflux was triggered and K+ influx was activated to maintain a stable K+/Na+ ratio in tissues.


Assuntos
Hordeum/metabolismo , Potássio/metabolismo , Tolerância ao Sal , Cloreto de Sódio/metabolismo , Sódio/metabolismo , Estresse Fisiológico , Hordeum/química , Hordeum/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Potássio/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...